Effects of inhibitory feedback in a network model of avian brain stem.

نویسندگان

  • Vasant K Dasika
  • John A White
  • Laurel H Carney
  • H Steven Colburn
چکیده

The avian auditory brain stem consists of a network of specialized nuclei, including nucleus laminaris (NL) and superior olivary nucleus (SON). NL cells show sensitivity to interaural time difference (ITD), a critical cue that underlies spatial hearing. SON cells provide inhibitory feedback to the rest of the network. Empirical data suggest that feedback inhibition from SON could increase the ITD sensitivity of NL across sound level. Using a bilateral network model, we assess the effects of SON feedback inhibition. Individual cells are specified as modified leaky-integrate-and-fire neurons with time constants and thresholds that vary with inhibitory input. Acoustic sound level is reflected in the discharge rates of the model auditory-nerve fibers, which innervate the network. Simulations show that with SON inhibitory feedback, ITD sensitivity is maintained in model NL cells over a threefold range in auditory-nerve discharge rate. In contrast, without SON feedback inhibition, ITD sensitivity is significantly reduced as input rates are increased. Feedback inhibition is most beneficial in maintaining ITD sensitivity at high-input rates (simulating high sound levels). With SON inhibition, ITD sensitivity is maintained for both interaurally balanced inputs (simulating an on-center sound source) and interaurally imbalanced inputs (simulating a lateralized source). Further, the empirically observed temporal build-up of SON inhibition and the presence of reciprocal inhibitory connections between the ipsi- and contralateral SON both improve ITD sensitivity. In sum, our network model shows that inhibitory feedback can substantially increase the sensitivity and dynamic range of ITD coding in the avian auditory brain stem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic Potential of Cord Blood Stem Cell in Brain Damage of an Animal Model

Purpose: At the present time the role of stem cells and its therapeutic effects is well known. Human or animal (bone marrow or cord blood) stem cells in stem cell therapy are a promising attempt to improve the recovery after post embryonic injuries. Materials and Methods: The present study was carried out on young Wistar rats. At first, cord blood stem cells (CBSCs) were isolated, and labeled w...

متن کامل

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

Mesenchymal Stem Cells with Granulocyte Colony-Stimulating Factor Reduce Stress Oxidative Factors in Parkinson\'s Disease

Background: Recent studies have shown that bone marrow mesenchymal stem cells (BMSCs) have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of granulocyte colony-stimulating factor (G-CSF) and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the...

متن کامل

O 26: Treatment of Traumatic Brain Injury in Adult Rats with Injection of Human Epileptic Neural Stem Cells and Nano-Scaffold

Traumatic brain injury (TBI) is described by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The use of human stem cells and self-assembling peptide scaffolds suggest huge potential for application in the treatment of TBI. In the present study, we surveyed the beneficial effec...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 1  شماره 

صفحات  -

تاریخ انتشار 2005